On the proof of Kuranishi’s embedding theorem
نویسندگان
چکیده
منابع مشابه
Gunther’s Proof of Nash’s Isometric Embedding Theorem
Around 1987 a German mathematician named Matthias Gunther found a new way of obtaining the existence of isometric embeddings of a Riemannian manifold. His proof appeared in [1, 2]. His approach avoids the so-called Nash-Moser iteration scheme and, therefore, the need to prove smooth tame or Moser-type estimates for the inverse of the linearized operator. This simplifies the proof of Nash’s isom...
متن کاملHigman ’ s Embedding Theorem . An Elementary Proof
In 1961 G. Higman proved a remarkable theorem establishing a deep connection between the logical notion of recursiveness and questions about finitely presented groups. The basic aim of the present paper is to provide the reader with a rigorous and detailed proof of Higman’s Theorem. All the necessary preliminary material, including elements of group theory and recursive functions theory, is sys...
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملA proof of Sobolev’s Embedding Theorem for Compact Riemannian Manifolds
Observe that H 0 (M) = L p(M). Also, Hk := H2 k is a Hilbert space under the L2-inner product. F k contains only smooth functions. In general, a sequence in F k will not converge in the H k norm to a function in F k , so we need to complete the space to have anything useful. An alternate approach would have been to start with functions in Lp rather than completing the space of smooth functions ...
متن کاملA Homotopy-theoretic Proof of Williams’s Metastable Poincaré Embedding Theorem
Recall the notion due to W. Browder of a Poincaré embedding [Br1, Br3, Br2, Br4, Wa, Ra, Wi1, Wi2], which is the homotopy analogue of a smooth embedding of manifolds. Let (M,A) be a simply connected m-dimensional (finite) Poincaré pair. A Poincaré embedding of (M,A) in the sphere S will mean a finite CW-complex W and a map f : A −→ W , such that the homotopy pushout M ∪ι A× [0, 1] ∪f W is homot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 1989
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(16)30322-5